民用飞机机身中等开口 结构的设计与研究

The Design and Research of the Middle-size **Cutout Fuselage Structure for Civil Aircraft**

柳 醉 / Liu Zui

(上海飞机设计研究院,上海 201210)

(Shanghai Aircraft Design and Research Institute, Shanghai 201210, China)

摘 要:

民用飞机机身的开口设计是飞机设计过程中的重要组成部分,一个成功的机型必须要有优秀的开口设计。 以某型飞机为例,详细分析和探讨了机身中等尺寸开口的结构设计过程,具体包括开口载荷分析、相关零部 件设计、间隙及阶差设计、密封及表面防护设计等方面的内容。

关键词:开口结构;民用飞机;壁板;机身

中图分类号:F407.5

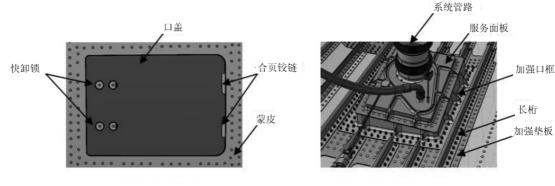
文献标识码:A

[Abstract] The design of middle-size cutout fuselage structures of civil aircraft is an important part in aircraft design process. A successful aircraft must have an excellent design of the cutout structure. As an example of some type of aircraft, the design procedure of the middle-size cutout fuselage structure has been analyzed and discussed in detail in this article, such as Load analysis, design of relevant components, gap and differential, seals and surface protection.

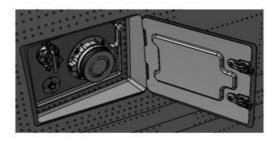
[Key words] Cutout Structure; Civil Aircraft; Skin Panel; Fuselage

引言 0

在民用飞机设计过程中,为满足飞机运营过程 中的维护、维修、通气、排气、系统服务面板设置等 功能需求,需要在机身壁板上设计多种开口,优秀 的开口设计可在某种程度上体现出飞机的先进性。


按直径的相对大小可以将开口大致分为小开 口、中等开口和大开口三种类型。一般来说,登机 门、服务门、货舱门、起落架舱等属于大开口,通气 口、排气口、天线开口、电缆开口、燃油管开口等属 于小开口,其它诸如水废水系统服务面板开口、窗 框开口、TRV 开口、空调开口、APU 开口等定义为中 等开口。

可以肯定的是,开口后的补强件不仅会提高设 计成本,还会增加结构重量,另外,开口区存在应力 集中,其静力和疲劳设计也缺乏足够的数据,故开 口结构的设计与分析通常也比较困难。


本文以某型飞机的废水系统服务面板开口为 例来详细分析和探讨民用飞机机身中等开口结构 的设计过程。

民用飞机机身中等开口结构的简 单介绍

为了方便操作,中等开口一般布置在机身的下 部或侧下部,某型飞机的废水系统服务面板开口即 位于中后机身收缩段侧下部,主要包含口盖、合页 铰链、快卸锁、加强垫板、加强口框、加强梁、服务面 板等零部件。口盖、合页铰链、快卸锁、服务面板等 主要用来实现系统开口的功能需求,加强垫板、加 强口框、加强梁等主要用来满足结构和强度的设计 要求。图1为某型飞机的废水系统服务面板开口结 构简图。

开口外表面 开口内表面

口盖翻开

图 1 某型飞机废水系统服务面板开口结构简图

民用飞机机身中等开口结构的功 能设计与分析

2.1 开口后的载荷分析

一般来说,机身壁板上的中等开口结构除了要 在蒙皮上开口之外,还将不可避免地要断开一根或 多根长桁,所以壁板传力结构的连续性将在开口处 中断,而且开口尺寸的大小和断开长桁的数量对加 强结构的布置有着直接影响。

目前国内外现役民用飞机的相关设计经验表 明,为了弥补中等开口对壁板传力连续性的破坏, 一般可以采用两种方式:一种是在蒙皮开口的周围 布置口框,利用口框的抗弯曲性能将载荷传走:另 一种是对薄壁结构进行强化,使其仍然能有效地参 与受力和传载。某型飞机即采用上述两种方式相 结合的办法来重新设计废水系统服务面板开口处 的传力通路。按照总体布置的要求并结合系统设 备的实际情况,某型飞机的废水系统服务面板开口 尺寸较大,约 260 mm×350mm,位于 2 个普通框之 间,并断开了3根长桁,其结果是导致中后机身收缩 段侧下部的这3根受压长桁的轴力中断,开口周围 的剪流重新分布。图 2 为某型飞机的废水系统服务 面板开口周围示意图。

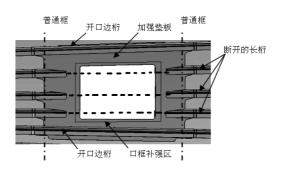
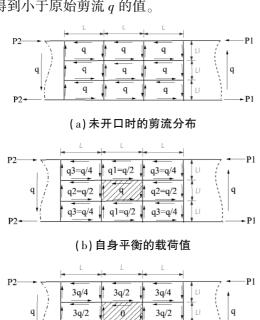


图 2 某型飞机废水系统服务面板开口周围示意图

下面详细探讨中等大小的开口对蒙皮剪流的 影响。假定一块壁板在没有开口时的剪流分布如 图 3(a) 所示, 此时可认为所有格子均作用有大小相 等的剪流 q:再如图 3(b) 所示, 假定在中央格子处 开口(图中斜线部分),为确定开口后周围的载荷, 可以设定在开口处作用有一个剪流,其大小等于未 开口时的剪流 q,但方向与之相反,此时即构成一个 自身平衡的载荷系统,口框区域以外不需要提供外 部反作用力,故可以据此解出口框区域由剪流引起 的相应的平衡载荷,具体分析过程如下。

按图 3(b) 所示, 在开口区域的上下格子板内的 剪流 q1 须与 q 引起的作用力保持静力平衡,依据平 衡方程式

$$\sum Fu = 0$$
, $\nabla q(L1) = q1(L1+L1)$


即可得
$$q1 = \frac{1}{2}q_{\circ}$$

同理,开口区域左右格子板内的剪流 q2 和四角 格子板内的剪流 q3 也必须分别与 q 引起的作用力 保持静力平衡,依据平衡方程式

即可得
$$q2 = \frac{1}{2}q$$
, $q3 = \frac{1}{4}q$

再将计算得到的剪流分布与原始的剪流分布 相叠加求代数和即可获得最终的载荷分布,如图3 (c)所示。

上述内容即可清晰地表明在机身壁板上开口 后口框周围发生的应力分布变化,开口的上下左右 均得到大于原始剪流 q 的值,而开口的四角区域内 均得到小于原始剪流 q 的值。

(c) 开口后的最终剪流分布 图 3 开口对剪流的影响示意图

3q/2

3q/4

3q/4

2.2 加强垫板设计

现代民用飞机一般都采用薄蒙皮结构,由2.1 节可知蒙皮上的中等开口将对蒙皮内的剪流分布 产生明显影响,工程设计上为了弥补开口对飞机结 构强度及刚度性能造成的不利影响,通常会在口框 周围的区域紧贴蒙皮表面布置加强垫板,加强垫板 的厚度一般比开口区域大1~2级(每级的厚度可 定为 0.2mm),其材料一般与蒙皮相同即可,在特别 关键的区域也需要选用性能更好的材料。

如图 4 所示,以某型飞机的废水系统服务面板 开口为例,其开口周围的蒙皮采用常规的 2000 系列 铝合金材料 2524-T3,基本厚度为1.6mm;加强垫板 也选用 2524-T3 型铝合金,厚度取 2.0mm;为提高 蒙皮补强区的稳定性及传载效率,加强垫板的四边 分别伸过开口边桁和边框下部与其共铆;开口区域 的所有长桁均与加强垫板有共铆连接关系,为降低 应力集中、改善开口区在增压舱载荷下的疲劳性 能、并保证长桁的轴向载荷和蒙皮的剪切载荷能平 稳地传递到开口补强区,加强垫板与长桁连接的两 边均做成锯齿形,锯齿的齿高以能布置2~3颗紧固 件的标准来设计:另外,为避免长桁爬上加强垫板 后的突然中断造成蒙皮刚度突变,进而产生局部硬 点破坏,设计中一般须将长桁断头的立面斜削,斜 削角(定义为斜削面与长桁轴线的夹角)以30°左右 较为合适。

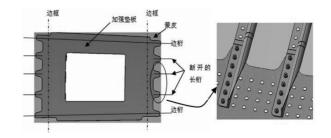


图 4 某型飞机废水系统服务面板开口蒙皮加强垫板

2.3 口框和服务面板设计

在民用飞机设计中,口框有时也称作"盆形 件",对于机身壁板上的中等开口来说,口框是非常 重要的结构件,利用口框的抗弯曲性能将大部分载 荷传走,所以优秀的口框设计能在满足强度和刚度 性能要求的前提下显著地提升结构效率。对于气 密舱的开口来说,口框还将承受气密载荷,故口框 在气密压力下的稳定性也需要加以考虑。以某型 飞机的废水系统服务面板开口口框为例,为了提高 工艺性,其口框设计成双层结构,下层充当主承力 结构,上层充当系统服务面板,如图5所示。

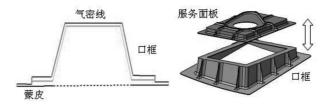


图 5 某型飞机废水系统服务面板开口口框

设计中为了增加刚度,口框和服务面板均采用

7000 系列的铝合金进行整体机加成形,且均布置了 加强筋,口框和服务面板之间通过铆钉进行不可拆 卸连接。以下详细讨论口框在气密载荷下的稳定 性问题。依据《飞机设计手册第9册:载荷、强度和 刚度》第432页的内容,可将口框看成是受侧压和 轴向压力的薄壁截锥壳,如图 6 所示,其允许的外压 力的计算公式为:

$$P_{cr} = \frac{\sigma_{cr}\delta\cos\alpha}{R_2}$$

 σ_{cr} 为外压 P_{cr} 引起的截锥壳大端的轴向薄膜应 力,MPa;

- δ 为截锥壳厚度, mm;
- α 为截锥壳顶部半角, \circ ;
- R_2 为截锥壳底部半径, mm_{\circ}

$$\sigma_{cr} = \eta K_p \frac{\pi^2 E}{12(1-\mu_e^2)} \left(\frac{\delta}{L_{eq}}\right) \frac{R_2}{\bar{\rho} \cos \alpha}$$

式中:

 K_n 为临界应力系数;

 η 为塑性修正系数,在弹性范围内, $\eta=1$;

 μ_a 为泊松比,取 $\mu_a = 0.33$;

E 为材料弹性模量,按 7000 系列铝合金估算, 可取 E = 70~967 MPa;

其它为几何参数,如图6所示。

$$\bar{\rho} = \frac{R_1 + R_2}{2\cos\alpha} (\bar{\rho})$$
 为截锥壳平均曲率半径);

$$L_{eq} = L\cos\alpha$$
, $Z = \frac{L_{eq}^2}{\rho\delta} (1 - \mu_e^2)^{\frac{1}{2}} (Z$ 为截锥壳曲率

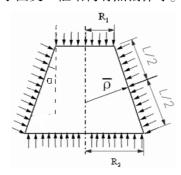
参数):

以某型飞机的废水系统服务面板开口口框为 例,取口框壳厚度 $\delta = 2 \text{mm}$, 口框壳小端半径 $R_1 =$ 150mm,口框壳大端半径 R_2 = 165mm,口框壳斜边 长度 L=85mm,由上述公式计算可得:

$$\alpha = \arcsin((R_2 - R_1)/L) = 10^\circ$$

$$\bar{\rho} = 160 \,\mathrm{mm}$$
; $L_{eq} = 84 \,\mathrm{mm}$
 $Z = 21$

依据《飞机设计手册第9册:载荷、强度和刚 度》第 433 页的 $Z-K_0$ 关系图,可得 $K_0=3.3$,故可得 外压 P_{cr} 引起的截锥壳大端的轴向薄膜应力 σ_{cr} :


$$\sigma_{cr} = 3.3 \frac{\pi^2 \times 70967}{12(1-0.33^2)} \left(\frac{2}{84}\right)^2 \frac{165}{160\cos 10^\circ} = 128MPa$$

进而可得:

$$P_{cr} = \frac{128 \times 2\cos 10^{\circ}}{165} = 1.53 MPa$$

假定 2 倍的气密压力 P=0.121 4MPa,则可得 裕度值:

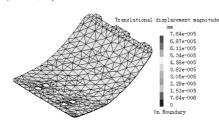
M. S.
$$=\frac{P_{cr}}{P}-1=\frac{1.53}{0.1214}-1=11.6$$

由结果可知口框气密载荷下的稳定性满足要 求,另外值得注意的是,该计算方法适用于铰支截 锥壳,应用于固支口框结构有点偏保守。

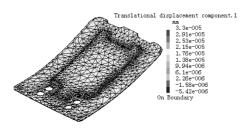
薄壁截锥壳

2.4 口盖设计

为了提升飞机检修和维护的效率,机身上需要 经常打开的口盖一般都采用铰链-快卸锁式的设 计。如果在开口周围布置有口框,则由于口框的抗 弯曲性能将大部分载荷传走,所以此时可认为铰链 -快卸锁式的口盖为不承力结构,设计上仅需进行 刚度设计,即考虑气动吸力对口盖变形的影响即 可。图7为某型飞机废水系统服务面板开口口盖示 意图,为防止飞行中口盖由于变形而发生脱落,可 在其内表面反扣冲压加强件。


图 7 某型飞机废水系统服务面板开口口盖

可通过简单的计算来说明在口盖内表面反扣 冲压加强件对抑制变形的作用,基于 CATIA V5R18 中的有限元分析模块,在相同的约束条件下,对口 盖外表面施加相同的气密载荷,分别得到了口盖内 表面不使用加强件和使用加强件的变形结果,显 然,在口盖内表面反扣冲压加强件对抑制变形有明 显的效果,如图8所示。


(下转第75页)

- [S]. 中国民用航空局航空器适航审定司,2011.3.18.
- [2] 中国民用航空局. CCAR-21-R3 民用航空产品和零部 件合格审定规定[S]. 北京:中国民用航空局,2007.3.15.
- [3] ORDER 8110.4, Type Certification. FAA AIR-100, 2011. 12.20.
- [4] PART 21, Certification of aircraft and related products, parts and appliances, and of design and production organizations. EA-SA.2012.8.3.
- [5] AC 21-32B, Control of Products and Parts Shipped Prior to Type Certificate Issuance. FAA AIR-200,2010.8.31.
- [6] AP-21-08,仅依据 TC 生产的审定和监督程序[S]. 中 国民用航空局航空器适航审定司,1994.3.1.
- [7] ORDER 8120. 22, Production Approval Procedures. FAA AIR-200,2013.2.25.

(上接第65页)

(a)不使用加强件的结果

(b)使用加强件的结果

图 8 关于口盖-冲压加强件的有限元计算结果

民用飞机机身中等开口结构的总 体设计要求

3.1 间隙及阶差设计要求

按照经验,口盖合上时口盖周边与蒙皮开口边 缘的间隙不能过大,否则将不能保证气动效果,飞 行中气流一旦大量从间隙进入将会产生气流扰动, 进而引起口盖的振动,最终有可能对铰链造成破 坏,所以本文讨论的中等开口口盖对间隙设计有一 定的要求。按照经验,一般采用铰链-快卸锁式的 口盖周围与蒙皮边缘留下 1mm 的间隙较为合适,这 样既不影响口盖开合的灵活性,又能保证机身开口 区域外表面的气动效率。另外需要注意,口盖外表 面不应突出蒙皮的理论外形,口盖零件上的厚度变 化及阶差应尽可能地布置在内表面。

3.2 气密性及防护性设计要求

对位于机身增压区的中等开口来说,气密性和 防护性是设计过程中必须要考虑的。以某型飞机 废水系统服务面板开口为例,其位于增压舱后服务

区的下侧,气密线可见图 5,为保证气密性,服务面 板上的各种功能开口必须严格密封,口框、加强垫 板和蒙皮之间除了贴面密封之外,还有必要在零件 的边缘进行填角密封,另外,开口区域所有穿过蒙 皮的紧固件需要湿安装。

飞机设计中,一般认为腐蚀和疲劳具有同等的 破坏力,而且很多疲劳破坏都是由腐蚀引起的,所 以飞机零部件的防腐蚀处理很重要,尤其是在机身 下侧那些赃物比较容易聚集的部位。某型民用飞 机的废水系统服务面板开口位于后服务区,距离厨 房和盥洗室很近,污物流到结构件上的可能性比较 大,所以该开口区域的结构件对表面保护的要求比 较高,结合成熟机型的相关经验,某型民用飞机在 此区域的结构件均采用底漆加面漆的表面处理方 法以防止环境腐蚀。

结论

本文以某型民用飞机的废水系统服务面板开 口为例,详细分析和探讨了民用飞机机身中等开口 的结构设计,从中可以发现,优秀的开口设计对飞 机的重量控制、疲劳寿命等方面均有非常积极的作 用,其设计过程需要综合考虑开口功能、开口区域 载荷、强度、刚度、间隙、阶差、防护等设计因素。

参考文献:

- [1]《飞机设计手册》总编委会. 飞机设计手册第9册:载荷、 强度和刚度[M]. 北京:航空工业出版社,2001.
- [2]《飞机设计手册》总编委会. 飞机设计手册第10册:结构 设计[M]. 北京:航空工业出版社,2001.
- [3]牛春匀. 实用飞机复合材料结构设计与制造[M]. 北 京: 航空工业出版社, 2010.
- [4] 牛春匀. 实用飞机结构工程设计[M]. 北京: 航空工业 出版社, 2008.
- [5]沈真. 复合材料结构设计手册[M]. 北京:航空工业出 版社,2011.