en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘湘云,女,硕士,工程师。主要研究方向:飞行器设计。E-mail:liuxiangyun@comac.cc;

张赢,男,硕士,工程师。主要研究方向:飞行器设计。E-mail:2079744341@qq.com

通讯作者:

刘湘云,E-mail:liuxiangyun@comac.cc

中图分类号:V214.8

文献标识码:A

DOI:10.19416/j.cnki.1674-9804.2022.03.010

参考文献 1
谭永刚.运输类飞机结构设计安全系数的探讨[J].民用飞机设计与研究.2014(3):35-38.
参考文献 2
颜芳芳.复合材料性能的分散性与安全系数[D].南京:南京航空航天大学,2009.
参考文献 3
王艺,杨阳,吴晓丹.考虑材料性能分散性的航空发动机结构安全系数确定方法[J].航空发动机.2021,47(1):58-62.
参考文献 4
QUX Y,HAFTKA R.Reliability-based design optimization using probabilistic safety factor[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Norfolk:AIAA,2003.
参考文献 5
刘克龙,姚卫星,余雄庆,等.复合材料的安全系数统计分析[J].南京航空航天大学学报,2004,36(1):22-28.
参考文献 6
贾星兰,刘文珽.构件可靠度与平均安全系数的研究[J].北京航空航天大学学报,2002,28(2):205-207.
参考文献 7
王晓军,马雨嘉,王磊,等.飞行器复合材料结构优化设计研究进展[J].中国科学:物理学力学天文学.2018,48(1):1-16.
参考文献 8
陈普会,肖闪闪.飞机复合材料结构的概率设计方法[J].南京航空航天大学学报,2012,44(5):683-693.
参考文献 9
何志全,刘杨,李泽江.大型民用飞机缝翼全尺寸静力试验载荷设计[J].航空学报,2019,40(2):522197.
参考文献 10
肖闪闪.飞机复合材料结构概率冲击损伤容限评估方法研究[D].南京:南京航空航天大学,2013.
参考文献 11
童明波,陈普会,沈真.国产复合材料冲击损伤容限可靠性分析[J].复合材料学报,2004,21(6):161-166.
参考文献 12
陈普会,沈真,聂宏.复合材料层压板冲击后压缩剩余强度的统计分析与可靠性评估[J].航空学报,2004,25(6):573-577.
目录contents

    摘要

    安全系数的确定需要考虑载荷和强度的分散性、材料属性、制造工艺的缺陷和误差等,载荷和强度是两个主要方面,因为它们是最基本的设计数据。目前普遍采用的安全系数值为1.5,是个常数。介绍了安全系数的概念,阐述了安全系数评估流程,并采用基于失效概率的方法来评估飞机复合材料结构安全系数的取值,对影响安全系数取值的因素,包括外载荷、冲击能量、剩余强度等变量,进行了统计分析,介绍了损伤漏检概率计算方法,给出了失效概率计算流程及安全系数评估流程。

    Abstract

    The determination of the safety factor requires consideration of the scatter of load and strength, material properties, defects in the manufacturing process, etc. Load and strength are the two main aspects, as they are the most basic design data. The current use of 1.5 as the safety factor value is a constant. This paper introduces the concept of safety factor, and describes the process of safety factor evaluation. The probability of failure-based method was used to evaluate the value of the safety factor of aircraft composite structures. The factors affecting the value of the safety factor, including external load, impact energy, residual strength and other variables, were statistically analyzed. The lack of damage detection probability calculation method was introduced, and the probability of failure calculation process and the safety factor evaluation process were given.

  • 0 引言

  • 飞机结构的安全性至关重要,人们为了保证飞机安全,提出了安全系数的概念,即极限载荷与限制载荷的比值[1-3]。但安全系数是个经验参数,其取值依赖于设计人员及已有结构的设计经验,存在一定的主观性。对于一个具体结构,目前所采用的1.5安全系数可能偏大也可能偏小,若偏大则会导致结构增重,成本增加;若偏小则会导致结构可靠性下降,影响飞行安全,所以安全系数的取值是飞机结构设计的一个核心问题。

  • 专家学者对安全系数的取值做了很多研究。Haftka基于概率统计研究了安全系数与分布函数的关系[4];刘克龙等采用统计学方法研究了复合材料的可靠度与安全系数之间的关系[5];贾星兰等研究了不同概率分布下安全系数与可靠度之间的关系[6];王晓军探讨了安全系数优化设计、可靠性优化设计及鲁棒优化设计方法[7]

  • 为了得到可接受的最低安全系数值,本文首先确定安全系数评估流程,之后将影响安全系数取值的因素,外载荷、冲击能量、剩余强度,转化为计算失效概率时的输入变量,采用基于失效概率评估的方法来确定飞机结构的安全系数[8]

  • 1 安全系数评估流程

  • 复合材料结构安全系数评估流程如图1所示,具体过程如下:

  • 1)给定一个初始安全系数,一般可取1.5;

  • 2)根据限制载荷的大小给出极限载荷;

  • 3)进行初始结构设计;

  • 4)将冲击威胁分布与初始强度分布离散化;

  • 5)在一个给定的冲击能量下,对所有初始强度下的失效概率进行累积求和;

  • 6)对所有冲击能量下的失效概率进行累积求和;

  • 7)若失效概率小于失效概率指标,则降低安全系数,并重新进行结构设计和验证。

  • 2 限制载荷的确定

  • 在确定性方法中限制载荷取为结构在服役过程中可能出现的最大外载荷,一般以应变形式表示[9]。在概率的方法中,考虑到外载荷的分散性,结构的限制载荷LL对应外载荷分布累积概率为P(载荷>LL)=2×10-5的载荷大小。

  • 图1 安全系数评估流程

  • 结构外载荷的不确定性主要是由于测量手段、外部环境突变、飞行员操控水平等原因造成,要求收集相关的数据并进行统计分析。具体的研究内容包括:收集外载荷数据,包括机动载荷、突风载荷;对数据进行统计分析,得到外载荷的概率密度函数。

  • 工程上一般根据载荷的性质来确定概率分布类型,常用的分布包括正态分布、Weibull分布等,本文采用对数正态分布,即:

  • fεl=12πσexp-lgεl-μ22σ2
    (1)
  • 其中,μσ分别表示应变对数的均值和标准差,由试验测得,包含了材料、尺寸、载荷等引起的分散性。

  • 3 冲击能量的影响

  • 3.1 冲击威胁

  • 冲击损伤是引起复合材料结构强度下降的主要原因,因此在结构设计过程中要充分考虑到冲击能量的影响。

  • 冲击损伤来源主要分为两类:飞行服役过程中的损伤和制造、维修过程中产生的损伤。飞行过程中的损伤威胁源包括了冰雹、跑道碎石、地面车辆和设备、鸟撞、涡轮发动机叶片脱落、循环载荷等。维修中的损伤主要来自于在维护操作中可拆卸部件的坠落。

  • 要确定冲击威胁的数据分布是比较困难的,必须建立在大量调查数据的基础上。在复合材料结构先进验证方法的研究初期,由于缺乏有关现役飞机复合材料结构所遭遇的冲击威胁的详细数据,对飞机复合材料结构可能遭遇的冲击威胁情况作了探索性的研究。

  • 冲击威胁分布取决于结构所处的位置及其构型,不同的结构区域将遭受不同的冲击威胁情况。本文假设冲击威胁f(E)服从双参数Weibull分布,通过能量间隔将冲击威胁进行量化,得到累计概率。图2为结构的冲击损伤概率曲线,取能量间隔为2J,则ΔPat=EE+2f(E)dE

  • 图2 结构的冲击损伤概率曲线

  • 3.2 冲击损伤

  • 复合材料结构冲击损伤度量主要有损伤面积、损伤宽度和凹坑深度,其中与损伤面积和损伤宽度相比,凹坑深度与冲击能量有良好的一一对应关系,且最容易测量。

  • 利用已有的试验数据,通过拟合可以得到冲击能量和凹坑深度的函数关系:

  • ai=α×expβ×Ei
    (2)
  • 其中,α(mm)、β(1/J)为材料参数。

  • 损伤面积通常定义为所有层间分层在平面投影面积的叠加,已有的试验数据表明,可以通过拟合得到损伤面积与冲击能量的函数关系:

  • Si=b1×expb2×Ei
    (3)
  • 其中,Si表示损伤面积,Ei表示给定的冲击能量,b1(mm2)和b2(1/J)分别表示与层合板的材料属性和铺层顺序有关的参数。

  • 为了简化计算,本文假设在给定的冲击能量下,凹坑深度、损伤面积均为一个确定的值,与冲击能量值为一一对应关系。[10]

  • 4 压缩剩余强度的确定

  • 层合板压缩剩余强度受冲击影响较大,试验数据表明,层压板冲击后压缩强度服从Weibull分布,且是初始强度、损伤面积的函数,通过拟合可以得到函数关系式:

  • εrε0,S=q×ε0×exp(p×S)
    (4)
  • 其中,pq为从试验中得到的与材料属性有关的参数,ε的单位是με[11]

  • 影响复合材料初始强度性能的因素较多,复合材料强度数据的分散性较大。复合材料结构初始强度的分散性主要来源于材料的分散性和结构在装配过程中所遇到的损伤。这些制造缺陷是很细微的,在结构出厂之前未能被检测出来。一般假设复合材料初始强度服从正态分布:

  • fε0=12πσexp-ε0-μ22σ2
    (5)
  • 其中,μ表示初始强度的均值,σ表示初始强度的标准差。

  • 5 漏检损伤概率

  • 在服役过程中一般采用目视检测方法来检测飞机结构的损伤,包括一般目视检测(GVI)和详细目视检测(DET)。进行损伤检测需要制定结构的检测维修方案,给定结构的检测方法以及检测间隔。假设损伤检出概率为POD(a),且损伤不扩展,结构的飞行寿命为N个飞行小时,检测间隔为m个飞行小时[12]

  • 在给定的冲击能量Ei下,结构的凹坑深度为ai,则损伤的检出概率为POD(ai)。

  • 结构损伤发生且未检出的概率计算过程如下:

  • 1)第1次检测前(m时刻),给定冲击能量Ei发生的概率为ΔPi,那么m小时内未遇到冲击能量Ei的概率为1-ΔPim,至少遇到一次的概率为1-1-ΔPim。第1次检测完成后(m时刻),结构的损伤发生概率降低为:

  • 1-1-ΔPim1-PODai
    (6)
  • 本文假定检出的损伤都会立刻修理,上式即为第1次检测完成后损伤漏检的概率。

  • 2)第2次检测前(2m时刻),结构的损伤发生概率为:

  • 1-1-ΔPim1-PODai+1-1-ΔPim=k=12 1-1-ΔPim1-PODaik-1
    (7)
  • 第2次检测完成后(2m时刻),结构的损伤发生概率降低为:

  • k=12 1-1-ΔPim1-PODaik-11-PODai=k=12 1-1-ΔPim1-PODaik
    (8)
  • 式(8)即为第2次检测完成后漏检损伤的概率,假定被检出的损伤已在第2次检测完成后被修理且结构强度恢复。

  • 3)第N/m次检测前(N时刻),结构的损伤发生概率为:

  • k=1N/m 1-1-ΔPim1-PODaik-1
    (9)
  • 显然,结构在最后一个飞行小时里损伤的发生概率最大,计算失效概率时,我们只需考虑最后一个飞行小时的损伤发生概率。

  • 又因m×ΔPi小于1,因此1-1-ΔPimm×ΔPi。则在给定的冲击能量Ei下,结构在最后一个飞行小时损伤发生概率为:

  • PatEi=k=1N/m 1-1-ΔPim1-PODaik-1=ΔPi×k=1N/m m×1-PODaik-1
    (10)
  • 6 失效概率的计算

  • 应力强度干涉模型揭示了失效概率的本质,是概率设计方法的核心内容之一。考虑服役过程中的检测维修,复合材料结构是正常还是失效取决于剩余强度和应力的关系,当结构应力大于剩余强度时则发生破坏。图3为应力强度干涉模型,f(r)表示剩余强度分布,f(s)表示应力分布,阴影部分即表示结构失效。

  • 图3 应力强度干涉模型

  • 若结构的初始强度为ε0j、剩余强度为εrij,则根据外载荷的概率分布以及应力强度干涉理论,给定冲击能量下的载荷大于剩余强度概率为:

  • PratEi,ε0j=εrij+ 12πσexp-lgεl-μ22σ2dε
    (11)
  • 最大的损伤发生概率为:

  • PatEi=ΔPi×k=1N/m m×1-PODaik-1
    (12)
  • 则在给定冲击能量下,结构的失效概率为:

  • PEi=PratEi×PatEi
    (13)
  • 最终得到结构总的失效概率,及结构在所有冲击能量下的失效概率累积:

  • Pf=PEi=i PratEi×PatEi
    (14)
  • 7 结论

  • 安全系数的确定需要考虑外载荷和剩余强度的分散性、材料属性、制造工艺的缺陷和误差等,本文将载荷和强度作为主要因素来进行统计学分析。目前民用飞机一般采用1.5作为安全系数值,但是,若采用一个常数,则未能考虑载荷、强度等影响因素的分散性。

  • 本文认为安全系数的取值应是用以保证飞机的失效概率低于一个容许的水平,给出了基于失效概率评估来确定安全系数的方法,其基本思路是将失效概率计算过程中的主要变量,如外载荷、初始强度、冲击能量等,假设为概率分布,而不是一个确定值,采用应力强度干涉模型来得到结构的失效概率,与失效概率指标进行比较,调整安全系数取值,直到得到一个可接受的最小安全系数,对飞机降本减重有重要意义。

  • 参考文献

    • [1] 谭永刚.运输类飞机结构设计安全系数的探讨[J].民用飞机设计与研究.2014(3):35-38.

    • [2] 颜芳芳.复合材料性能的分散性与安全系数[D].南京:南京航空航天大学,2009.

    • [3] 王艺,杨阳,吴晓丹.考虑材料性能分散性的航空发动机结构安全系数确定方法[J].航空发动机.2021,47(1):58-62.

    • [4] QUX Y,HAFTKA R.Reliability-based design optimization using probabilistic safety factor[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Norfolk:AIAA,2003.

    • [5] 刘克龙,姚卫星,余雄庆,等.复合材料的安全系数统计分析[J].南京航空航天大学学报,2004,36(1):22-28.

    • [6] 贾星兰,刘文珽.构件可靠度与平均安全系数的研究[J].北京航空航天大学学报,2002,28(2):205-207.

    • [7] 王晓军,马雨嘉,王磊,等.飞行器复合材料结构优化设计研究进展[J].中国科学:物理学力学天文学.2018,48(1):1-16.

    • [8] 陈普会,肖闪闪.飞机复合材料结构的概率设计方法[J].南京航空航天大学学报,2012,44(5):683-693.

    • [9] 何志全,刘杨,李泽江.大型民用飞机缝翼全尺寸静力试验载荷设计[J].航空学报,2019,40(2):522197.

    • [10] 肖闪闪.飞机复合材料结构概率冲击损伤容限评估方法研究[D].南京:南京航空航天大学,2013.

    • [11] 童明波,陈普会,沈真.国产复合材料冲击损伤容限可靠性分析[J].复合材料学报,2004,21(6):161-166.

    • [12] 陈普会,沈真,聂宏.复合材料层压板冲击后压缩剩余强度的统计分析与可靠性评估[J].航空学报,2004,25(6):573-577.

  • 参考文献

    • [1] 谭永刚.运输类飞机结构设计安全系数的探讨[J].民用飞机设计与研究.2014(3):35-38.

    • [2] 颜芳芳.复合材料性能的分散性与安全系数[D].南京:南京航空航天大学,2009.

    • [3] 王艺,杨阳,吴晓丹.考虑材料性能分散性的航空发动机结构安全系数确定方法[J].航空发动机.2021,47(1):58-62.

    • [4] QUX Y,HAFTKA R.Reliability-based design optimization using probabilistic safety factor[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Norfolk:AIAA,2003.

    • [5] 刘克龙,姚卫星,余雄庆,等.复合材料的安全系数统计分析[J].南京航空航天大学学报,2004,36(1):22-28.

    • [6] 贾星兰,刘文珽.构件可靠度与平均安全系数的研究[J].北京航空航天大学学报,2002,28(2):205-207.

    • [7] 王晓军,马雨嘉,王磊,等.飞行器复合材料结构优化设计研究进展[J].中国科学:物理学力学天文学.2018,48(1):1-16.

    • [8] 陈普会,肖闪闪.飞机复合材料结构的概率设计方法[J].南京航空航天大学学报,2012,44(5):683-693.

    • [9] 何志全,刘杨,李泽江.大型民用飞机缝翼全尺寸静力试验载荷设计[J].航空学报,2019,40(2):522197.

    • [10] 肖闪闪.飞机复合材料结构概率冲击损伤容限评估方法研究[D].南京:南京航空航天大学,2013.

    • [11] 童明波,陈普会,沈真.国产复合材料冲击损伤容限可靠性分析[J].复合材料学报,2004,21(6):161-166.

    • [12] 陈普会,沈真,聂宏.复合材料层压板冲击后压缩剩余强度的统计分析与可靠性评估[J].航空学报,2004,25(6):573-577.

  • 微信公众号二维码

    手机版网站二维码

    我要投稿 投稿指南 联系我们 二维码
    TOP