-
0 引言
-
零部件的加工制造与服役是航空飞机研发、应用中的两大关键问题,而材料内部的损伤演化、断裂行为对以上过程起着至关重要的作用。塑性加工的断裂与服役中疲劳裂纹的形成均可描述为空洞/微裂纹形核、长大、聚合过程,损伤演化行为一方面受到外载荷的影响,另一方面则与材料的微观组织密切相关。认识损伤的微观机理、建立合理的断裂预测方法是飞机零部件合理加工工艺制定及其安全服役的基础。
-
航空飞机的主要承力件为塑性加工的金属材料,以铝合金、钛合金为主。例如,空客A380中铝合金、钛合金用量分别占总重量的61%与10%[1-2]。民用飞机上的铝合金主要为2000、6000及7000系,用于发动机短舱零件、飞机管件、机身蒙皮、起落架等部位[3-4]。钛合金则包括α+β相的Ti6Al4V合金、β型Ti-10V-2Fe-3Al以及α相Ti-55,主要用于起落架、引擎舱、尾翼,发动机零部件[5-6]。轧制、冲压、挤压等塑性加工方法是制备航空零部件的手段,其过程涉及复杂的应力状态,因此塑性成形的损伤研究主要关注材料在不同应力状态下的力学响应。以2024铝合金为例,麻省理工WIERZBICKI团队[7-8]开展了11种不同应力状态的断裂实验,基于实验结果进行了塑性断裂建模。
-
在飞机的服役过程中,疲劳是影响机动性、可靠性及安全性的重要因素[9]。目前,对于铝合金、钛合金的疲劳已开展了广泛研究。从微观机制上讲,铝合金的疲劳总是与内部的第二相、初始空洞有关[10-12],而钛合金的疲劳则受到晶体取向、滑移行为等因素影响显著[13-15]。
-
本文以典型航空金属材料为例,对损伤这一加工、服役中的共性问题进行综述,主要关注损伤的微观机制、预测方法及两者间的关联性。通过总结共性的损伤影响因素、不同断裂预测方法的优缺点,提出航空损伤研究的发展趋势和方向。
-
1 塑性成形的损伤机制与预测模型
-
塑性加工不仅具有“成形”作用,并且能够改善组织、减少缺陷,被广泛应用于各类承载零部件的加工制造。塑性损伤与应力状态相关,拉伸导致空洞长大与缩颈型断裂[16],而剪切则使空洞以转向为主,材料发生剪切断裂[17]。对于铝合金2024[8]、6082[18]等航空材料,其抗剪能力劣于抗拉能力。明确不同应力条件的损伤机制,并基于机制理解建立数学描述方法是塑性损伤研究中的关键问题。
-
1.1 塑性损伤机制
-
在微观机理上,将塑性断裂阐述为微空洞的形核、长大与聚合过程。空洞形核往往发生在材料内的第二相颗粒处[19],此后,空洞在外载荷的作用下发生长大、聚合,形成裂纹。基于对塑性损伤与应力状态关联性的研究[7-8,20],普遍以应力三轴度(η)与罗德参数(L)作为塑性损伤中的关键参量,两者分别代表了正应力、偏应力的影响,不同应力状态下的空洞长大、聚合行为存在差异。UEDA等[16]利用同步辐射分层照相技术对铝合金AA2129中的空洞演化进行了原位表征,发现在高应力三轴度条件下,空洞发生明显长大,并产生缩颈型聚合;而在低应力三轴度条件,空洞长大不明显,而是发生转向与剪切型聚合,形成倾斜断口。TANCOGNE DEJEAN等[17]研究了铝合金2024在剪切加载条件下的空洞演化,发现空洞体积比的增长主要与空洞形核有关,而已存在基体内的空洞体积基本保持恒定;研究中观察到了多个空洞的转向行为;对于含夹杂处裂纹的观察结果表明,其取向与最大主应力方向相近。空洞缩颈与空洞带形成是塑性断裂的两种主要方式,分别对应于拉伸、剪切为主的应力状态[21],如图1所示。
-
图1 塑性断裂的主要方式
-
应力状态是金属材料塑性断裂的外载荷条件,而微观组织则是损伤形成、扩展的内部条件。铝合金的损伤、断裂行为与材料内第二相、夹杂物的存在密切相关。TAYLOR和SHERRY[22]在关于铝合金2024损伤的研究中指出,形状不规则的Al2Cu位置存在应力集中,并且由于其断裂韧性低,在2%~3%这一很小的应变水平下即发生破裂,造成空洞形核。 PAPASIDERO等[23]认为铝合金2024内空洞的主要形核点是分布在晶界的粗大金属间化合物(富Al、Cu、Fe、MnSi颗粒);研究利用原位扫描电子显微镜观察到了第二相的破碎与脱落,并提出两种形核方式的空洞形状存在差异。除第二相导致的空洞形核外,TODA等[24]则认为材料内部含氢微空洞也是塑性断裂中不可忽视的因素。HANG Su等[25]则利用X射线断层摄影方法确定了Al-Zn-Mg-Cu中第二相与含氢微孔对其断裂行为的综合影响;结果表明,含氢微孔导致准解理断裂,而夹杂物破碎、剥落造成韧窝型断裂。总的来说,夹杂、第二相、初始微空洞均可视作材料中的缺陷点,缺陷区是外载荷作用下裂纹形成的关键位置。
-
钛合金具有密排六方晶体结构,相对于面心立方的铝合金,钛合金损伤行为受到晶粒取向、相构成等微观组织因素的影响更显著。钛及钛合金在塑性变形中开动不同的滑移系,包括基面、柱面、锥面滑移,各滑移系的启动取决于晶粒取向以及滑移系启动的临界分切应力(CRSS)[26]。TAN Changsheng等[27]讨论了TC21钛合金中滑移、变形与损伤的相互关联,结果表明,板条α与等轴α相的主要变形机制均为柱面滑移,然而,初生α板条由于协调塑性变形的能力差,裂纹在其内部的剪切变形带萌生。SHAO Hui等[28-29]发现TC21钛合金中主要的裂纹形核点为α相片层的边界,而裂纹的扩展取决于相取向与拉伸方向的夹角。YAN Zhibing等[30]指出在具有魏氏组织TA19钛合金中,当相邻α晶粒的取向难以使晶间变形协调时,裂纹在晶界处形核。取向因素同样影响钛合金内的空洞长大。WANG Jing等[31]则指出亚稳β钛合金的微裂纹沿着晶内开动的滑移系扩展,裂纹在晶界位置发生转向以协调相邻晶粒的滑移行为。
-
1.2 损伤断裂预测模型
-
目前,针对金属材料塑性断裂预测已开展了较为充分的研究并建立了大量断裂模型[32],通过将模型耦合至有限元,即可实现成形过程中的断裂预测。常温条件金属材料的损伤断裂模型一般将损伤因子表示为应力状态的函数:
-
式中, 为断裂应变,表示材料抵抗断裂的能力,为等效应变增量,变形过程中的损伤累积以积分形式的损伤因子D表征。
-
针对Al2024-T351的断裂行为,麻省理工WIERZBICKI团队[7-8]原创性地设计并开展了不同应力状态的实验;研究结果表明, 并非随η的增长而单调降低,偏应力在塑性断裂中的作用不可忽视。通过考虑η与L的共同作用,BAI Yuanli和WIERZBICKI[7]构建了适用于广泛应力状态的Al2024断裂模型。WIERZBICKI团队的成果为塑性断裂研究提供了重要的方法与数据支持。损伤断裂的数值预测方法在变形性较好的6000系铝合金中应用广泛,如Al6082[18]、Al6061[33]、Al6016[34]等。LOU Yanshan等[18]针对6082铝合金板的冲压成形提出了断裂预测模型,模型分别以、η、L的函数表示空洞形核、长大及剪切型聚合,并且引入了随L变化的临界η,模型对于剪切、单向拉伸、平面应变拉伸与双向拉伸均取得较好的预测结果。
-
塑性断裂建模的预测方法也在钛合金中有所应用,如Ti-6Al-4V[35]、TA2[36]、Ti-15-3[37]等。GIGLIO等[35]通过11组不同应力条件的实验确定了Ti-6Al-4V的断裂应变,拟合了Bao-Wierzbicki模型参数,并以多段式的方式在<断裂应变,应力三轴度>空间内建立了Ti-6Al-4V的断裂面。ZHANG Kai等[41]则考虑了罗德参数对Ti-6Al-4V断裂的影响,在连续损伤力学框架内构建了耦合型断裂模型,模型表示了损伤萌生、扩展的路径敏感性;研究利用平板试样拉伸、三点弯曲对断裂模型进行验证,实验与预测的载荷-位移曲线、裂纹萌生位置均有较好的对应。XU Wenchen等[37]关注了Ti-15-3合金在旋压这一实际生产过程中的断裂预测问题,将不同的断裂模型耦合至有限元仿真,通过对比实验开裂结果确定模型的适用性;结果表明,仅McClintock模型能够预测中等减薄速率下开裂被抑制的情况。表1中列举了几种断裂模型在航空材料中的典型应用。
-
实际上,对于密排六方结构的钛合金,其断裂行为对微观组织十分敏感,往往会出现各向异性。TANG Bingtao等[38]考虑了Ti-6Al-4V板的各向异性,在经典Mohr-Coulomb模型的基础上对合金的室温韧性断裂进行建模,断裂模型中包含12个待定参数。当材料存在织构、各向异性时,宏观尺度的断裂预测往往非常复杂,需要拟合更多的材料参数以表征各向异性[39-40]的影响,例如LOU Yanshan和YOON[39]所提出的各向异性断裂模型包含13个材料参数。当织构材料在不同方向加载时,晶粒的变形能力及滑移系的开动存在差异,是各向异性产生的内在原因。倘若能够在塑性变形计算的过程中考虑滑移系剪切应力应变的本构关系,即可本征地反映材料的各向异性,晶体塑性有限元方法(CPFEM)就是针对这一问题开发的[42]。晶体塑性理论将塑性变形解释为各滑移系上的位错运动,基于此建立的CPFEM能够计算细观变形、应力,反映晶粒大小、位向、变形机制等参数的影响。
-
基于CPFEM的损伤预测已应用于铝合金。CLAYTON和MCDOWELL[43-44]通过分解变形梯度提出了针对金属多晶体损伤的多尺度预测方法,计算框架中的损伤变形梯度包含了空洞、裂纹的影响。ROUSSELIER和LUO Meng[45]将经典的断裂模型耦合至CPFEM,在高应力三轴度条件采用空洞损伤模型,而在低应力三轴度则引入滑移系上的Mohr-Coulomb唯象模型,耦合损伤模型的计算方法成功捕捉了6260铝合金损伤在厚度方向的扩展及剪切裂纹形成。对于铝合金2198,ROUSSELIER等[46]综合考虑了应变时效与损伤机制,将相应算法引入CPFEM,模拟反映了动态应变时效所引起的局部变形集中以及拉伸条件下倾斜裂纹的形成机制。
-
对于微观组织复杂的钛合金,晶体塑性有限元方法已被广泛应用于研究其塑性变形中的滑移行为、变形不均匀性[47]等。然而,对于晶体塑性框架内钛合金损伤预测的研究目前还处于起步阶段。例如,ASIM等[48]运用CPFEM方法研究了Ti-10V-2Fe-3Al合金中的塑性损伤行为,发现当晶粒取向使其具有高屈服强度时,应力集中显著,空洞长大更明显;此外,合金中相界的倾斜度会显著影响空洞长大。ASIM等[49]进一步在CPFEM框架内耦合了双相钛合金(Ti-10V-2Fe-3Al)的空洞形核、长大、聚合模型,模型反映了变形速率、应力三轴度、罗德参数、相界倾斜度对空洞长大的影响,对于代表体元的应力-应变响应、空洞体积比具有较好的预测结果;此外,模型可用于板料的成形极限预测,预测结果与实验结果吻合较好。LIU Jia等[50]则在CPFEM框架内考虑了纯Ti屈服、硬化的晶粒尺寸效应(Hall-Petch关系)及损伤行为,将Lemaitre-Chaboche模型耦合至模拟,所建立的模拟方法能够描述大变形条件的塑性变形与损伤行为,预测与实验数据对应较好。
-
基于CPFEM的断裂研究能够本征的反映微观组织的影响,是具有前景的发展方向。然而,CPFEM由于描述细观尺度材料变形行为难以直接实现构件尺度的应用,而宏观有限元方法则欠缺表示细观晶体因素影响的能力,如何兼顾机制与实用性是损伤预测发展中亟待解决的问题。
-
2 典型航空金属材料的服役缺陷
-
航空疲劳问题贯穿于飞机研制和运营的全寿命周期中,是影响飞机可靠性、安全性的关键问题。认识疲劳机制、预测疲劳寿命是提高服役性能、合理设计服役年限的基础,本节将主要介绍上述两方面内容。此外,随着增材技术发展,利用增材技术制造航空零部件也成为重要发展方向,空洞缺陷是这一技术中不可忽视的问题。
-
2.1 疲劳断裂机制
-
疲劳裂纹的萌生、扩展总是与材料内的不连续状态、非均质组织相关。谭晓明等[10]总结了航空铝合金的疲劳损伤机制,指出对于内部有微孔的铸造铝合金,疲劳裂纹萌生于微孔,对于变形态铝合金,疲劳裂纹在尺寸较大的第二相处形核。SHEN Yang等[11]利用原位实验观察了AA6061铝合金裂纹的萌生与扩展,结果表明,材料的主要析出相包含粗大的Mg2Si相与富铁的金属间化合物,在加载过程中,Mg2Si首先发生破裂。此外,由于两种析出相都分布在晶界位置,使合金的破坏呈现沿晶特征。XUE Yibin等[51]在关于7075系铝合金疲劳机制的研究中指出,试样表面破碎的富铁金属间化合物是疲劳裂纹的主要萌生位置,此外,粗大的金属氧化物也会影响裂纹的萌生。研究特别指出,当疲劳裂纹形核位置存在杂质颗粒时,疲劳寿命下降约30%。LI Peifeng等[12]研究了空洞对疲劳开裂的影响,结果表明,疲劳裂纹尖端的空洞会显著提升裂纹的扩展速率。MERATI和EASTAUGH[52]认为连续空洞的存在对7075铝合金疲劳寿命的影响很大。疲劳裂纹的萌生同样与晶粒及其变形能力相关[53],WISNER和KONTSOS[54]在关于2024合金疲劳的研究中指出,具有软取向晶粒晶界处的颗粒是裂纹的主要形核点。表2列举了不同铝合金体系中疲劳裂纹萌生、扩展的关键位置。
-
由于航空飞机的工作环境复杂,各零部件的腐蚀疲劳行为受到了越来越多关注。局部腐蚀造成的应力集中会加速裂纹萌生,使材料出现准解理的断裂特征,这一现象在多种铝合金2024[55]、6061[56]和7075[57]体系中均有报道。腐蚀坑为疲劳裂纹提供形核位点,KIM等[57]认为7075疲劳裂纹的形核、长大均与局部腐蚀相关,类椭球形的腐蚀团聚位置最容易萌生裂纹。宋海鹏和刘长春[55]利用三维数字相关技术研究了预腐蚀2024铝合金的疲劳开裂行为,发现试样边缘的局部腐蚀会穿透试样,促进疲劳裂纹萌生,进而引起材料氢脆。
-
钛合金疲劳损伤的机制研究关注晶体取向[58-59]与相[60]的作用,疲劳裂纹的形核位置主要为相界、晶界等。PILCHAK等[59]认为Ti-6Al-4V中β相的取向通过影响材料的滑移行为而改变疲劳形核行为,发生滑移传递(slip transfer)的界面易于萌生裂纹。HELSTROFFER等[14]在对双峰Ti-5Al-5Mo-5V-3Cr低周疲劳的研究中强调了晶体取向的影响,研究指出,裂纹主要在发生柱面滑移的初生α晶粒中扩展,β相的晶体取向以及α、β相弹塑性各向异性对疲劳过程有着不可忽视的影响。BIROSCA等[15,61]关于双相钛合金疲劳机制的研究表明,双相组织中的相变β区能够阻碍裂纹扩展,因此其疲劳裂纹扩展速率低于层片组织;层片组织中,裂纹的扩展方向随片层取向的改变而发生变化,并倾向于在发生基面滑移的晶粒中扩展;而在双相组织中,扩展路径主要为发生柱面滑移的α相。HUANG Chaowen等[62-64]对Ti-5Al-5Mo-5V-3Cr-1Zr合金的高周疲劳行为开展了系统研究,发现双相组织中疲劳裂纹的主要形核点为初生α相与相变β相界面以及初生α颗粒内部;而对于层片组织,裂纹主要在α/β界面处形核,裂纹沿相界面扩展或穿过α层片,在β相内形成长裂纹。WU Guoqing等[65]在关于Ti-6Al-4V疲劳与组织的关联性研究中指出,不同组织的高周疲劳强度遵循以下规律:双峰组织>层片组织>等轴组织。表3中列举了不同钛合金体系中疲劳裂纹萌生、扩展的关键位置。
-
2.2 疲劳寿命评价方法
-
最早的飞机设计关注结构承载能力,即静强度。第二次世界大战后,飞机的使用寿命增加,疲劳问题凸显,由此提出了安全寿命、损伤容限等概念与理论[66]。有关金属材料的疲劳寿命预测目前已发展了大量基于应力、应变、应变能的经典模型,疲劳建模的进一步研究关注复杂应力下材料的疲劳性能以及微观组织的影响[67]。ZHAO Tianwen和JIANG Yanyao[68]在关于应力状态对7075-T651铝合金疲劳影响的研究中指出,原始SWT模型无法准确预测最大主应力较低的情况;因此,修正了SWT模型使其能够同时考虑正应力、剪应力的影响,修正模型在低周-高周的疲劳条件均能够较好地预测寿命值。GATES和FATEMI[69]考虑了多轴应力状态的剪切失效机制,以基于临界平面(裂纹萌生具有的危险平面)的Fatemi-Socie疲劳模型(FS)为基础,使用最大剪应力平面上的剪切应力范围替代屈服强度,对最大正应力进行无量纲化,修正了FS系数,修正系数的模型对于7075-T651及2024-T3铝合金均有较好的预测结果。ZHAO Bingfeng等[70]针对飞机用铝合金建立了多轴疲劳寿命预测方法:首先,实验表征了非比例加载条件的循环硬化行为,基于次临界平面的定义提出了新的损伤因子,用以表示硬化过程;为验证模型的有效性,针对2A12铝合金设计了四种验证实验,发现所提出的模型相较于三种传统模型对疲劳寿命的预测更为准确、稳定。
-
宏观尺度的疲劳分析方法具有本征的“唯象性”,难以表示第二相颗粒、晶粒取向等因素的影响,而以上晶体因素是重要而不可忽视的。由此,在细观尺度发展了各类基于物理机制的疲劳模型,如基于位错的疲劳模型[71],考虑吉布斯自由能的微裂纹形核模型[72]等。微观组织是疲劳研究中的关键问题,基于物理机制的多阶段式模型即考虑了微观组织的影响,将总的疲劳寿命表示为形核、扩展、裂纹形成寿命的总和[73]。XUE Yibin等[73]认为夹杂物破碎对铝合金7075-T651疲劳的影响不可忽视,因此,在多阶段模型中引入富Fe夹杂处的疲劳裂纹形核,扩展了模型的应用范围,使其适用于单轴、多轴应力状态的低周、高周疲劳寿命预测。SHYAM和LARA CURZIO[74]认为预测2024铝合金的疲劳需要描述过程中“疲劳条带的形成”,因此,在基于位错的小疲劳裂纹长大框架内对疲劳条带机制进行建模,实现了寿命预测。LI Ling等[75]则通过引入背应力模型在晶体塑性有限元框架内建立了铝合金7075的疲劳寿命预测方法,这一方法能够体现织构的影响,预测精度为69.1%~87.3%。
-
在钛合金的寿命预测中,HU Dianyin等[76]关注了夹杂对疲劳寿命的影响,认为双相钛合金中硬质α相附近的应力集中及其引起失效不可忽视,因此,在应力寿命预测模型中考虑了滑移引起的弹性应力场,并基于α相的失效对模型进行修正;研究对模型在有、无夹杂情况下的适用性进行了验证,均取得了较为理想的预测结果。ANAHID等[77]开发了预测双相钛合金在循环加载条件下裂纹萌生的晶体塑性算法,研究所采用的非局部模型能够表示“软”晶粒晶界的位错聚集及相邻硬晶粒中的应力集中与裂纹形核。 FOMIN等[78]针对Ti-6Al-4V高周疲劳寿命预测进行建模,在基于断裂机制的框架内表示了裂纹形核、长大、短裂纹长大过程,将疲劳寿命表示为应力集中因子、裂纹长度的函数,实现了疲劳寿命范围预测,预测与实验结果的一致性好。REN Yongming等[79]将多阶段式模型应用于Ti-6Al-4V低周疲劳寿命预测,预测与实验结果仅存在较小的预测误差。WANG Ke等[80]关注了Ti-6Al-4V中短裂纹对疲劳的影响,因为短疲劳裂纹比长裂纹长大速率更快;通过考虑裂纹尖端弹塑性行为,修正了短裂纹扩展模型,用于预测Ti-6Al-4V在不同应力比、应力等级下的疲劳,预测与实验数据具有较好的吻合度。
-
与塑性断裂的研究方法类似,疲劳寿命的预测方法主要包含宏观、细观两方面,理论上来说,两种方法应具有互补性,但在实际应用中,仍以数据库与简单的应力、应变判定为主,利用多尺度计算实现系统性预测的方法仍有待进一步开发。
-
2.3 增材制造钛合金空洞缺陷对疲劳性能的影响
-
增材制造技术由于其成形过程快、制备复杂结构零部件能力强以及材料利用率高等优点成为近年来的研究热点[81]。钛合金增材制造零部件具有强度高、耐腐蚀以及零件表面粗糙度低等优点,然而,增材制造金属部件内部始终存在大量的空洞与氧化物等缺陷,成为了限制了钛合金增材件在航空航天领域的应用的瓶颈。研究报道,选择性激光熔化的Ti-6Al-4V含0.08%~0.23%的空洞[82-83],电子束融化产品为0.03%~0.19%[84-85],而激光沉积方法的初始空隙率为0.013%~0.36%[86]。EDWARDS等[87]的研究结果表明选区激光熔化制备的Ti-6Al-4V疲劳性能明显低于变形态材料,增材件内部的孔隙率是降低材料疲劳性能的重要因素之一。BISWAL等[84]在关于Ti-6Al-4V空洞对疲劳性能的研究中强调了空洞形状的影响,研究提出,球形空洞、半球空洞、扁平形空洞的应力集中因子存在差异。AKGUN等[88]指出:Ti-6Al-4V合金疲劳裂纹倾向于在更大尺寸的气孔周围形核,裂纹在加载进行到50%疲劳寿命时才开始形核而非传统观点认为的加载后第一时间形核。由于增材件内部缺陷尺寸、形状及分布的多样性及随机性,导致增材件疲劳性能存在一定的波动性和难以预测的特征。
-
3 损伤研究中的共性问题与展望
-
金属材料的损伤累积总是发生在应力、应变集中[89]或变形极不均匀的区域[90],如双相钢中的铁素体马氏体相界面[89],镁合金的晶界[91]、Ti-6Al-4V中的次生α相[92]等。GHADBEIGI等[93]发现双相钢DP1000在塑性变形中,铁素体内的局部应变可达1.2,大应变诱发裂纹产生;此外,铁素体与马氏体的界面由于显著的变形不均匀同样会出现微裂纹。OROZCO等[91]利用高分辨数字图像相关技术标定了镁合金AZ31中的应变分布,结果表明,在宏观拉伸应变为0.027的条件下,晶界处的最大局部应变能够达到平均应变的32倍。EDWARDS等[94]发现在层片γ-TiAl合金中晶界应变集中在0.02的远场应变条件即出现,在0.08的远场应变下,晶界处的局部应变达到0.6,引发裂纹产生。LUNT等[92]认为Ti-6Al-4V中次生α相内强烈的变形非均匀性是其疲劳寿命降低的重要原因。当材料内存在第二相时,相区域的应力、应变集中会导致裂纹形核,如镍基高温合金中非金属夹杂[95]、铝合金中Al7Cu2Fe、Al2CuMg等第二相颗粒[54]等。
-
总的来说,金属材料损伤的萌生、扩展总是与应力、应变集中和内部缺陷、界面有关,两者可分别视作损伤演化的内因与外因,是金属材料中的共性问题。然而,目前的研究主要关注不同体系合金的“个性”行为,如何通过对不同体系材料的研究总结共性规律是加深对材料认识的重要一步。
-
对于损伤的预测模型研究,如何兼顾机理与实用性是重要的发展方向。以塑性断裂为例,在研究中尽管已开发了大量的断裂预测模型,但在实际应用中仍以应变作为粗略的估算方法。有些模型的待拟合材料参数达10个以上[39],其本身的实用意义并不大。此外,如何基于对损伤共性规律的认识建立具有通用性的评价方法也是研究应当关注的问题。对于材料的疲劳服役性能,虽然提出了各类先进算法,但实际的评价以数据库为标准。特别对于材料开发,当成分、组织改变时,需要开展重复性测试实验以确定性能,而疲劳实验的周期长、花费大,开发具有通用性的计算方法是节约飞机研发成本和时间的重要环节。
-
参考文献
-
[1] ZHANG X S,CHEN Y J,HU J L.Recent advances in the development of aerospace materials[J].Progress in Aerospace Sciences,2018,97:22-34.
-
[2] 龚德志,王新栋,叶聪杰.多梁式中央翼盒下壁板压缩稳定性研究[J].民用飞机设计与研究,2017,(4):88-94.
-
[3] 吴秋平.浅谈民用飞机常用金属材料[J].民用飞机设计与研究,2002,4:1-2,49.
-
[4] 李勇,李东升,李小强.大型复杂壁板构件塑性成形技术研究与应用进展[J].航空制造技术,2020,63(21):36-45,53.
-
[5] 张宝柱,孙洁琼.钛合金在典型民用飞机机体结构上的应用现状[J].航空工程进展,2014,5(3):275-280.
-
[6] 李重河,朱明,王宁,等.钛合金在飞机上的应用[J].稀有金属,2009,33(1):84-92.
-
[7] BAI Y,WIERZBICKI T.A new model of metal plasticity and fracture with pressure and Lode dependence[J].International Journal of Plasticity,2008,24(6):1071-1096.
-
[8] BAO Y,WIERZBICKI T.On fracture locus in the equivalent strain and stress triaxiality space[J].International Journal of Mechanical Sciences,2004,46(1):81-98.
-
[9] 孙侠生,苏少普,孙汉斌,等.国外航空疲劳研究现状及展望[J].航空学报,2021,42(5):40-65.
-
[10] 谭晓明,张丹峰,陈跃良,等.基于疲劳裂纹萌生机理的铝合金疲劳寿命可靠性评估方法[J].航空材料学报,2014,34(2):84-89.
-
[11] SHEN Y,MORGENEYER T F,GARNIER J,et al.Three-dimensional quantitative in situ study of crack initiation and propagation in AA6061 aluminum alloy sheets via synchrotron laminography and finite-element simulations[J].Acta Materialia,2013,61(7):2571-2582.
-
[12] LI P F,LEE P D,MAIJER D M,et al.Quantification of the interaction within defect populations on fatigue behavior in an aluminum alloy[J].Acta Materialia,2009,57(12):3539-3548.
-
[13] SEN M,SUMAN S,MUKHERJEE S,et al.Low cycle fatigue behavior and deformation mechanism of different microstructures in Ti-5Al-5Mo-5V-3Cr alloy[J].International Journal of Fatigue,2021,148.
-
[14] HELSTROFFER A,HÉMERY S,ANDRIEU S,et al.Low cycle fatigue crack initiation in Ti-5Al-5Mo-5V-3Cr in relation to local crystallographic orientations[J].Materials Letters,2020,276.
-
[15] BIROSCA S,BUFFIERE J Y,KARADGE M,et al.3-D observations of short fatigue crack interaction with la2mellar and duplex microstructures in a two-phase titanium alloy[J].Acta Materialia,2011,59(4):1510-1522.
-
[16] UEDA T,HELFEN L,MORGENEYER T F.In situ laminography study of three-dimensional individual void shape evolution at crack initiation and comparison with Gurson-Tvergaard-Needleman-type simulations[J].Acta Materialia,2014,78:254-270.
-
[17] TANCOGNE-DEJEAN T,ROTH C C,MORGENEYER T F,et al.Ductile damage of AA2024-T3 under shear loading:Mechanism analysis through in-situ laminography[J].Acta Materialia,2021,205.
-
[18] LOU Y,CHEN L,CLAUSMEYER T,et al.Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals[J].International Journal of Solids and Structures,2017,112:169-184.
-
[19] ACHOURI M,GERMAIN G,DAL SANTO P,et al.Experimental characterization and numerical modeling of micromechanical damage under different stress states[J].Materials & Design,2013,50:207-222.
-
[20] LOU Y,HUH H,LIM S,et al.New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals[J].International Journal of Solids and Structures,2012,49(25):3605-3615.
-
[21] BESSON J.Continuum models of ductile fracture:a review[J].International Journal of Damage Mechanics,2009,19(1):3-52.
-
[22] TAYLOR K L,SHERRY A H.The characterization and interpretation of ductile fracture mechanisms in AL2024-T351 using X-ray and focused ion beam tomography[J].Acta Materialia,2012,60(3):1300-1310.
-
[23] PAPASIDERO J,DOQUET V,LEPEER S.Multiscale investigation of ductile fracture mechanisms and strain localization under shear loading in 2024-T351 aluminum alloy and 36NiCrMo16 steel[J].Materials Science and Engineering:A,2014,610:203-219.
-
[24] TODA H,OOGO H,HORIKAWA K,et al.The true origin of ductile fracture in aluminum alloys[J].Metallurgical and Materials Transactions A,2013,45(2):765-776.
-
[25] HANG S,YOSHIMURA T,TODA H,et al.Influences of hydrogen micropores and intermetallic particles on fracture behaviors of Al-Zn-Mg-Cu aluminum alloys[J].Metallurgical and Materials Transactions A,2016,47(12):6077-6089.
-
[26] XU X,LUNT D,THOMAS R,et al.Identification of active slip mode in a hexagonal material by correlative scanning electron microscopy[J].Acta Materialia,2019,175:376-393.
-
[27] TAN C S,SUN Q Y,XIAO L,et al.Characterization of deformation in primary α phase and crack initiation and propagation of TC21 alloy using in-situ SEM experiments[J].Materials Science and Engineering:A,2018,725:33-42.
-
[28] SHAO H,ZHAO Y Q,GE P,et al.In-situ SEM observations of tensile deformation of the lamellar microstructure in TC21 titanium alloy[J].Materials Science and Engineering:A,2013,559:515-519.
-
[29] SHAO H,ZHAO Y Q,GE P,et al.Crack initiation and mechanical properties of TC21 titanium alloy with equiaxed microstructure[J].Materials Science and Engineering:A,2013,586:215-222.
-
[30] YAN Z B,WANG K,ZHOU Y,et al.Crystallographic orientation dependent crack nucleation during the compression of a widmannsttten-structure α/β titanium alloy[J].Scripta Materialia,2018,156:110-114.
-
[31] WANG J,ZHAO Y Q,ZHOU W,et al.In-situ investigation on tensile deformation and fracture behaviors of a new metastable β titanium alloy[J].Materials Science and Engineering:A,2021,799.
-
[32] 马宏越,肖纳敏,钱鹏,等.非耦合韧性断裂准则及其在航空金属材料中的应用[J].航空材料学报,2021,41(2):16-31.
-
[33] BEESE A M,LUO M,LI Y N,et al.Partially coupled anisotropic fracture model for aluminum sheets[J].Engineering Fracture Mechanics,2010,77(7):1128-1152.
-
[34] GORJI M B,MOHR D.Predicting shear fracture of aluminum 6016-T4 during deep drawing:Combining Yld-2000 plasticity with Hosford-Coulomb fracture model[J].International Journal of Mechanical Sciences,2018,137:105-120.
-
[35] GIGLIO M,MANES A,VIGANò F.Ductile fracture locus of Ti-6Al-4V titanium alloy[J].International Journal of Mechanical Sciences,2012,54(1):121-135.
-
[36] MA H,XU W,JIN B C,et al.Damage evaluation in tube spinnability test with ductile fracture criteria[J].International Journal of Mechanical Sciences,2015,100:99-111.
-
[37] XU W C,WU H,MA H,et al.Damage evolution and ductile fracture prediction during tube spinning of titanium alloy[J].International Journal of Mechanical Sciences,2018,135:226-239.
-
[38] TANG B T,WANG Q,GUO N,et al.Modeling anisotropic ductile fracture behavior of Ti-6Al-4V titanium alloy for sheet forming applications at room temperature[J].International Journal of Solids and Structures,2020,207(1):178-195.
-
[39] LOU Y S,YOON J W.Anisotropic ductile fracture criterion based on linear transformation[J].International Journal of Plasticity,2017,93:3-25.
-
[40] GU G,MOHR D.Anisotropic Hosford-Coulomb fracture initiation model:Theory and application[J].Engineering Fracture Mechanics,2015,147:480-497.
-
[41] ZHANG K,BADREDDINE H,SAANOUNI K.Ductile fracture prediction using enhanced CDM model with Lode angle-dependency for titanium alloy Ti-6Al-4V at room temperature[J].Journal of Materials Processing Technology,2020,277.
-
[42] ROTERS F,DIEHL M,SHANTHRAJ P,et al.DAMASK—the düsseldorf advanced material simulation kit for modeling multi-physics crystal plasticity,thermal,and damage phenomena from the single crystal up to the component scale[J].Computational Materials Science,2019,158:420-478.
-
[43] CLAYTON J D,MCDOWELL D L.Finite polycrystalline elastoplastic and damage:multiscale kinematics[J].International Journal of Solids and Structures,2003,40(21):5669-5688.
-
[44] CLAYTON J D,MCDOWELL D L.Homogenized finite elastoplasticity and damage:theory and computations[J].Mechanics of Materials,2004,36(9):799-824.
-
[45] ROUSSELIER G,LUO M.A fully coupled void damage and Mohr-Coulomb based ductile fracture model in the framework of a Reduced Texture Methodology[J].International Journal of Plasticity,2014,55:1-24.
-
[46] ROUSSELIER G,MORGENEYER T F,REN S,et al.Interaction of the Portevin-Le Chatelier phenomenon with ductile fracture of a thin aluminum CT specimen:experiments and simulations[J].International Journal of Fracture,2017,206(1):95-122.
-
[47] ZHAO J,LV L,LIU G,et al.Analysis of deformation inhomogeneity and slip mode of TA15 titanium alloy sheets during the hot tensile process based on crystal plasticity model[J].Materials Science and Engineering:A,2017,707:30-39.
-
[48] ASIM U B,SIDDIQ M A,KARTAL M E.A CPFEM based study to understand the void growth in high strength dual-phase titanium alloy(Ti-10V-2Fe-3Al)[J].International Journal of Plasticity,2019,122:188-211.
-
[49] ASIM U B,SIDDIQ M A,MCMEEKING R M,et al.A multiscale constitutive model for metal forming of dual phase titanium alloys by incorporating inherent deformation and failure mechanisms[J].Modelling and Simulation in Materials Science and Engineering,2021,30.
-
[50] LIU J,LI J,DIRRAS G,et al.A three-dimensional multi-scale polycrystalline plasticity model coupled with damage for pure Ti with harmonic structure design[J].International Journal of Plasticity,2018,100:192-207.
-
[51] XUE Y B,EL KADIRI H,HORSTEMEYER M F,et al.Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy[J].Acta Materialia,2007,55(6):1975-1984.
-
[52] MERATI A,EASTAUGH G.Determination of fatigue related discontinuity state of 7000 series of aerospace aluminum alloys[J].Engineering Failure Analysis,2007,14(4):673-685.
-
[53] TAKAHASHI Y,SHIKAMA T,YOSHIHARA S,et al.Study on dominant mechanism of high-cycle fatigue life in 6061-T6 aluminum alloy through microanalyses of microstructurally small cracks[J].Acta Materialia,2012,60(6-7):2554-2567.
-
[54] WISNER B,KONTSOS A.Investigation of particle fracture during fatigue of aluminum 2024[J].International Journal of Fatigue,2018,111:33-43.
-
[55] 宋海鹏,刘长春.基于数字图像相关的预腐蚀2024-T4铝合金疲劳开裂实验研究[J].航空材料学报,2020,40(2):43-52.
-
[56] WEBER M,EASON P D,ÖZDEŞH,et al.The effect of surface corrosion damage on the fatigue life of 6061-T6 aluminum alloy extrusions[J].Materials Science and Engineering:A,2017,690:427-432.
-
[57] KIM S,BURNS J T,GANGLOFF R P.Fatigue crack formation and growth from localized corrosion in Al-Zn-Mg-Cu[J].Engineering Fracture Mechanics,2009,76(5):651-667.
-
[58] BANTOUNAS I,DYE D,LINDLEY T C.The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V[J].Acta Materialia,2009,57(12):3584-3595.
-
[59] PILCHAK A L,WILLIAMS R E A,WILLIAMS J C.Crystallography of fatigue crack initiation and growth in fully lamellar Ti-6Al-4V[J].Metallurgical and Materials Transactions A,2009,41(1).
-
[60] 焦磊,毛友川,郝芳,等.显微组织对TC21合金疲劳性能的影响[J].西安文理学院学报(自然科学版),2021,24(4):55-59.
-
[61] BIROSCA S,BUFFIERE J Y,GARCIA-PASTOR F A,et al.Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction[J].Acta Materialia,2009,57(19):5834-5847.
-
[62] HUANG C W,ZHAO Y Q,XIN S W,et al.High cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy with lamellar microstructure[J].Materials Science and Engineering:A,2017,682:107-116.
-
[63] HUANG C W,ZHAO Y Q,XIN S W,et al.High cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy with bimodal microstructure[J].Journal of Alloys and Compounds,2017,695:1966-1975.
-
[64] HUANG C W,ZHAO Y Q,XIN S W,et al.Effect of microstructure on high cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy[J].International Journal of Fatigue,2017,94:30-40.
-
[65] WU G Q,SHI C L,SHA W,et al.Effect of microstructure on the fatigue properties of Ti-6Al-4V titanium alloys[J].Materials & Design,2013,46:668-674.
-
[66] 崔德刚,鲍蕊,张睿,等.飞机结构疲劳与结构完整性发展综述[J].航空学报,2021,42(5):66-87.
-
[67] KAMAL M,RAHMAN M M.Advances in fatigue life modeling:A review[J].Renewable and Sustainable Energy Reviews,2018,82:940-949.
-
[68] ZHAO T W,JIANG Y Y.Fatigue of 7075-T651 aluminum alloy[J].International Journal of Fatigue,2008,30(5):834-849.
-
[69] GATES N R,FATEMI A.On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis[J].International Journal of Fatigue,2017,100:322-336.
-
[70] ZHAO B F,XIE L Y,WANG L,et al.A new multiaxial fatigue life prediction model for aircraft aluminum alloy[J].International Journal of Fatigue,2021,143.
-
[71] PRASTITI N G,XU Y L,BALINT D S,et al.Discrete dislocation,crystal plasticity and experimental studies of fatigue crack nucleation in single-crystal nickel[J].International Journal of Plasticity.2020,126(1).
-
[72] YAO Y,FINE M E,KEER L M.An energy approach to predict fatigue crack propagation in metals and alloys[J].International Journal of Fracture,2007,146(3):149-158.
-
[73] XUE Y B,KADIRI H EL,HORSTEMEYER M F,et al.Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy[J].Acta Materialia,2007,55(6):1975-1984.
-
[74] SHYAM A,LARA-CURZIO E.A model for the formation of fatigue striations and its relationship with small fatigue crack growth in an aluminum alloy[J].International Journal of Fatigue,2010,32(11):1843-1852.
-
[75] LI L,SHEN L,PROUST G.Fatigue crack initiation life prediction for aluminium alloy 7075 using crystal plasticity finite element simulations[J].Mechanics of Materials,2015,81:84-93.
-
[76] HU D Y,PAN J C,MAO J X,et al.An anisotropic mesoscale model of fatigue failure in a titanium alloy containing duplex microstructure and hard α inclusions[J].Materials & Design,2020,193.
-
[77] ANAHID M,SAMAL M K,GHOSH S.Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of polycrystalline titanium alloys[J].Journal of the Mechanics and Physics of Solids.2011,59(10):2157-2176.
-
[78] FOMIN F,HORSTMANN M,HUBER N,et al.Probabilistic fatigue-life assessment model for laser-welded Ti-6Al-4V butt joints in the high-cycle fatigue regime[J].International Journal of Fatigue,2018,116:22-35.
-
[79] REN Y M,LIN X,GUO P F,et al.Low cycle fatigue properties of Ti-6Al-4V alloy fabricated by high-power laser directed energy deposition:Experimental and prediction[J].International Journal of Fatigue,2019,127:58-73.
-
[80] WANG K,WANG F,CUI W C,et al.Prediction of short fatigue crack growth of Ti-6Al-4V[J].Fatigue & Fracture of Engineering Materials & Structures,2014,37(10):1075-1086.
-
[81] LIN Y,ZHENG Z Q,LI S C,et al.Microstructures and properties of 2099 Al-Li alloy[J].Materials Characterization,2013,84:88-99.
-
[82] KASPEROVICH G,HAUSMANN J.Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting[J].Journal of Materials Processing Technology,2015,220:202-214.
-
[83] LEUDERS S,THÖNE M,RIEMER A,et al.On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting:Fatigue resistance and crack growth performance[J].International Journal of Fatigue,2013,48:300-307.
-
[84] BISWAL R,SYED A K,ZHANG X.Assessment of the effect of isolated porosity defects on the fatigue performance of additive manufactured titanium alloy[J].Additive Manufacturing,2018,23:433-442.
-
[85] TAMMAS-WILLIAMS S,WITHERS P J,TODD I,et al.Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components[J].Scripta Materialia,2016,122:72-76.
-
[86] QIU C L,RAVI G A,DANCE C,et al.Fabrication of large Ti-6Al-4V structures by direct laser deposition[J].Journal of Alloys and Compounds,2015,629:351-361.
-
[87] EDWARDS P,RAMULU M.Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J].Materials Science and Engineering:A,2014,598:327-337.
-
[88] AKGUN E,ZHANG X,LOWE T,et al.Fatigue of laser powder-bed fusion additive manufactured Ti-6Al-4V in presence of process-induced porosity defects[J].Engineering Fracture Mechanics,2022,259:108140.
-
[89] TASAN C C,HOEFNAGELS J P M,DIEHL M,et al.Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations[J].International Journal of Plasticity,2014,63:198-210.
-
[90] SHANG X Q,ZHANG H M,CUI Z S,et al.A multiscale investigation into the effect of grain size on void evolution and ductile fracture:Experiments and crystal plasticity modeling[J].International Journal of Plasticity,2020,125:133-149.
-
[91] OROZCO-CABALLERO A,LUNT D,ROBSON J D,et al.How magnesium accommodates local deformation incompatibility:A high-resolution digital image correlation study[J].Acta Materialia,2017,133:367-379.
-
[92] LUNT D,XU X,BUSOLO T,et al.Quantification of strain localisation in a bimodal two-phase titanium alloy[J].Scripta Materialia,2018,145:45-49.
-
[93] GHADBEIGI H,PINNA C,CELOTTO S,et al.Local plastic strain evolution in a high strength dual-phase steel[J].Materials Science and Engineering:A,2010,527(18-19):5026-5032.
-
[94] EDWARDS T E J,DI GIOACCHINO F,CLEGG W J.An experimental study of the polycrystalline plasticity of lamellar titanium aluminide[J].International Journal of Plasticity,2019,118:291-319.
-
[95] NARAGANI D,SANGID M D,SHADE P A,et al.Investigation of fatigue crack initiation from a non-metallic inclusion via high energy x-ray diffraction microscopy[J].Acta Materialia,2017,137:71-84.
-
摘要
损伤是航空结构件加工制造与服役中的共性问题。以微观损伤机制与损伤预测模型为主要关注点,论述了典型航空用铝合金、钛合金中损伤形核、扩展的影响因素以及宏观、细观尺度损伤断裂的预测方法。对于塑性成形过程,以受力状态为切入点,阐述了不同应力状态下损伤演化的差异性,介绍了基于应力状态损伤模型在航空材料中的应用。对于疲劳损伤问题,总结了不同体系合金中的微观影响因素,如第二相颗粒、晶体取向等,讨论了疲劳预测方法在航空用铝合金、钛合金中的应用。将局部应力应变集中归纳为损伤萌生、扩展的外因,而材料内部缺陷、界面等为内因,塑性变形、疲劳过程的损伤累积均为内、外因综合作用的结果。通过归纳损伤机制研究进展与问题,分析宏、细观预测方法的优缺点,提出以共性规律与通用性预测方法为重点的发展方向。
Abstract
Damage is a common issue in the processing, manufacturing and service of aviation structural parts.Focusing on the damage mechanism and modeling of typical aviation aluminum and titanium alloys, the influencing factors of damage and the prediction methods of macro-scale and micro-scale were discussed. Stress state was a key factor in affecting the damage behavior in plastic forming process. This paper expounds the differences of damage evolution under different stress states, and introduces the application of stress-based damage model in aviation materials. For the fatigue damage, the micro influencing factors in different alloys, such as second phase particles, crystal orientation and so on, were summarized, and the application of the fatigue prediction methodologies in typical aviation aluminum and titanium alloys were discussed. Taking the local strain and stress concentration as external cause and the defect in microstructure as internal cause, The damage accumulation is considered as the result of the combination of the above two factors. By summarizing the progress and problems of damage mechanism, and discussing the advantages and disadvantages of macro and meso prediction methods, this paper puts forward the development direction of common law and universal prediction methods.
Keywords
damage ; fatigue ; stress state ; microstructure ; crystal plasticity finite element method